Dilations Classwork Thurs/Fri 1/9 or 1/10

Divide your graph paper into 4 sections. Complete each dilation in one section of your graph paper. For each problem \#1-5 state the scale factor $(\mathrm{k}=)$ and write a similarity statement. Draw in the dilations lines and determine the center of dilation.

1. $(x, y) \rightarrow(2 x, 2 y)$

A(1, 1)
B(1,5)
$C(3,1)$
$D(3,5)$
2. $(x, y) \rightarrow(3 x, 3 y)$
$D(-1,3)$
$\mathrm{E}(1,3)$
F($-1,-2$)
$G(1,-2)$

In the $3^{\text {rd }}$ and $4^{\text {th }}$ sections of your graph paper apply the dilations for \#3 and \#4.
3. $(x, y) \rightarrow(2 / 3 x, 2 / 3 y)$
$P(-6,3)$
$Q(-3,9)$
$R(3,6)$
4. $(x, y) \rightarrow(-2 x,-2 y)$
$S(1,1)$
$T(3,6)$
$V(3,1)$

On the back of your graph paper apply the dilations for \#5 and \#6.
5. $(x, y) \rightarrow(2 x, 2 y)$

Line $y=1 / 2 x+3$
(Hint: pick a few points on the line to dilate)
6. Plot a line segment with endpoints at $A(-7,4)$ and $B(7,-3)$. Find the coordinates that split the directed line segment $A B$ into a ratio of 2:5.

Questions should be answered on the back of your graph paper under \#5 and \#6, OR on a separate paper and stapled to the back of your graph paper.

1. Find the perimeter of each rectangle you graphed in \#1 and \#2. By what factor does the perimeter increase from the small to large rectangle:
A. in graph \#1?
B. in graph \#2?
C. Does this match the original scale factor? If no, explain.
2. Find the area of each rectangle you graphed in \#1 and \#2. By what factor does the area increase from the small to large rectangle:
A. in graph \#1?
B. in graph \#2?
C. Does this match the original scale factor? If no, explain.
3. If you were given a figure and asked to dilate it with a scale factor of 5:
A. How many times larger would the new figure's perimeter be?
B. How many times larger would the new figure's area be?
4. A figure has a perimeter of 12.5 cm and an area of $8 \mathrm{~cm}^{2}$. A dilation of $(x, y) \rightarrow(4 x, 4 y)$ is applied.
A. What is the new area?
B. What is the new perimeter?
5. What is the general relationship between the scale factor and how the perimeter scales?
6. What is the general relationship between the scale factor and how the area scales?
7. Where is the center of dilation when using coordinate dilations $(x, y) \rightarrow(k x, k y)$?

Describe what happens to the final figure if a dilation is applied with the given scale factor (Use \#1-4 to help you)
8. The scale factor is more than one $(k>1)$
9. The scale factor is between zero and one $(0<k<1)$
10. The scale factor is negative $(k<0)$. Be as specific as possible.
11. What does the dilated line have in common with the original line?
12. Look back at line segment $A B$ on graph \#6. How do you know if you have divided your line segment in a ratio of $2: 5$ or $5: 2$?

