Dilations Classwork Thurs/Fri 1/9 or 1/10

Divide your graph paper into 4 sections. Complete each dilation in one section of your graph paper. For each problem #1-5 state the scale factor (k =) and write a similarity statement. Draw in the dilations lines and determine the center of dilation.

1.	$(x, y) \rightarrow (2x, 2y)$	2.	(x, y) → (3x, 3y)
	A(1, 1)		D(-1, 3)
	B(1, 5)		E(1,3)
	C(3, 1)		F(-1, -2)
	D(3, 5)		G(1 <i>,</i> –2)

In the 3rd and 4th sections of your graph paper apply the dilations for #3 and #4.

3.	$(x, y) \rightarrow (2/3x, 2/3y)$	4. (x, y) → (-2x, -2y)
	P(6, 3)	S(1, 1)	
	Q(-3, 9)	T(3, 6)	
	R(3, 6)	V(3, 1)	

On the back of your graph paper apply the dilations for #5 and #6.

5.	$(x, y) \rightarrow (2x, 2y)$	6.	Plot a line segment with endpoints at A(-7, 4)
	Line $y = 1/2x + 3$		and B(7, -3). Find the coordinates that split the
	(Hint: pick a few points on the line to dilate)		directed line segment AB into a ratio of 2:5.

Questions should be answered on the back of your graph paper under #5 and #6, **OR** on a separate paper and stapled to the back of your graph paper.

1. Find the perimeter of each rectangle you graphed in #1 and #2. By what factor does the perimeter increase from the small to large rectangle:

A. in graph #1? B. in graph #2? C. Does this match the original scale factor? If no, explain.

- 2. Find the area of each rectangle you graphed in #1 and #2. By what factor does the area increase from the small to large rectangle:
 - A. in graph #1? B. in graph #2? C. Does this match the original scale factor? If no, explain.
- 3. If you were given a figure and asked to dilate it with a scale factor of 5:
 - A. How many times larger would the new figure's perimeter be?
 - B. How many times larger would the new figure's area be?
- 4. A figure has a perimeter of 12.5 cm and an area of 8cm². A dilation of (x, y) → (4x, 4y) is applied.
 A. What is the new area? B. What is the new perimeter?
- 5. What is the general relationship between the scale factor and how the perimeter scales?
- 6. What is the general relationship between the scale factor and how the area scales?
- 7. Where is the center of dilation when using coordinate dilations $(x, y) \rightarrow (kx, ky)$?

Describe what happens to the final figure if a dilation is applied with the given scale factor (Use #1-4 to help you)

- 8. The scale factor is more than one (k > 1)
- 9. The scale factor is between zero and one (0 < k < 1)
- 10. The scale factor is negative (k < 0). Be as specific as possible.
- 11. What does the dilated line have in common with the original line?
- 12. Look back at line segment AB on graph #6. How do you know if you have divided your line segment in a ratio of 2:5 or 5:2?