Polygon Angle Sum Review

Interior and Exterior Angles of Polygons

Polygon Angle Sum Theorem:

Sum of interior angles = $(n - 2)180^{\circ}$ where n is representing the number of sides in that polygon.

Sum of the exterior angles of a polygon

The exterior angles always add to 360°! (It doesn't matter how many sides there are)

Sum of exterior angles = 360° Always.

Finding Interior Angle Measures and Sums in Polygons

A Find the sum of the interior angle measures of a convex octagon.

$$(n-2)180^{\circ}$$
 Polygon \angle Sum Thm.
 $(8-2)180^{\circ}$ An octagon has 8 sides, so substitute 8 for n.

1080° Simplify.

B Find the measure of each interior angle of a regular nonagon.

Step 1 Find the sum of the interior angle measures.

$$(n-2)180^{\circ}$$
 Polygon \angle Sum Thm.
 $(9-2)180^{\circ} = 1260^{\circ}$ Substitute 9 for n and simplify.

Step 2 Find the measure of one interior angle.

$$\frac{1260^{\circ}}{9} = 140^{\circ}$$
 The int. \triangle are \cong , so divide by 9.

Find the measure of each interior angle of quadrilateral *PQRS*.

$$(4-2)180^\circ=360^\circ$$
 Polygon \angle Sum Thm. $3c$ $m\angle P+m\angle Q+m\angle R+m\angle S=360^\circ$ Polygon \angle Sum Thm. $c+3c+c+3c=360$ Substitute. $8c=360$ Combine like terms. $c=45$ Divide both sides by 8.

$$m\angle P = m\angle R = 45^{\circ}$$

 $m\angle Q = m\angle S = 3(45^{\circ}) = 135^{\circ}$

Finding Exterior Angle Measures in Polygons

A Find the measure of each exterior angle of a regular hexagon.

A hexagon has 6 sides and 6 vertices.

sum of ext.
$$\angle = 360^{\circ}$$
 Polygon Ext. \angle Sum Thm.

measure of one ext. $\angle = \frac{360^{\circ}}{6} = 60^{\circ}$ A regular hexagon has $6 \cong \text{ext. } \angle \text{s.}$, so divide the sum by 6.

The measure of each exterior angle of a regular hexagon is 60°.

$$7a^{\circ} + 2a^{\circ} + 3a^{\circ} + 6a^{\circ} + 2a^{\circ} = 360^{\circ}$$

20a = 360

Polygon Ext. ∠ Sum Thm.

Combine like terms.

a = 18 Divide both sides by 20.

OPTIONAL PRACTICE BELOW. (ANSWERS AT THE END)

1. Find the sum of the interior angle measures of a	2. Find the r
convex dodecagon.	regular nona

measure of each interior angle of a agon.

Find the measure of each angle if it is a regular dodecagon.

- 3. Find the measure of each exterior angle of a regular octagon.
- 4. Find the measure of each exterior angle of a regular 16-gon.

6. Find the value of x.

Answers

1. Find the sum of the interior angle measures of a convex dodecagon.	2. Find the measure of each interior angle of a regular nonagon.
3600°	140°
Find the measure of each angle if it is a regular dodecagon.	
300°	
3. Find the measure of each exterior angle of a regular octagon.	4. Find the measure of each exterior angle of a regular 16-gon.
45°	22.5°
5. Find the value of x.	6. Find the value of x.
2x+38° 45.3	72°