Writing Equations and Graphing Polynomials

9. State the degree and end behavior of each polynomial, find the zeros (using any method necessary) and multiplicities, then sketch the graph. $f(x)=x^{5}-x^{4}-13 x^{3}+x^{2}+48 x+36$ $(\mathrm{x}-3),(\mathrm{x}+1)$ and $(\mathrm{x}+2)$ are factors 10. State the degree and write the equation of the polynomial in factored form, then sketch the graph. Leading Coefficient - $\mathrm{x}=-4$, of multiplicity 3 $\mathrm{x}=-1$, of multiplicity 1 $\mathrm{x}=0$, of multiplicity 1 $\mathrm{x}=3$, of multiplicity 2 11. State the degree and end behavior of each polynomial, find the zeros (using any method necessary) and multiplicities, then sketch the graph. $f(x)=x^{4}+3 x^{3}-43 x^{2}-9 x+120$ $(x-\sqrt{3})$ is a factor 12. State the degree and end behavior of each polynomial, find the zeros (using any method necessary) and multiplicities, then sketch the graph. $f(x)=x^{4}+3 x^{3}-5 x^{2}-21 x-14$ $(x-\sqrt{7})$ is a factor	

