

9. State the degree and end behavior of each polynomial, find the zeros (using any method necessary) and multiplicities, then sketch the graph. $f(x) = x^5 - x^4 - 13x^3 + x^2 + 48x + 36$ (x - 3), (x + 1) and $(x + 2)$ are factors	10. State the degree and write the equation of the polynomial in factored form, then sketch the graph. Leading Coefficient $-x = -4$, of multiplicity 3 x = -1, of multiplicity 1 x = 0, of multiplicity 1 x = 3, of multiplicity 2
11. State the degree and end behavior of each polynomial, find the zeros (using any method necessary) and multiplicities, then sketch the graph. $f(x) = x^4 + 3x^3 - 43x^2 - 9x + 120$ $(x - \sqrt{3})$ is a factor	12. State the degree and end behavior of each polynomial, find the zeros (using any method necessary) and multiplicities, then sketch the graph. $f(x) = x^4 + 3x^3 - 5x^2 - 21x - 14$ $(x - \sqrt{7})$ is a factor