\qquad Date \qquad Period \qquad

Without a calculator:

1. Evaluate the expression without using a calculator (you must show your work).

A.	B. $\log 10$	C. $\log _{b} b^{-3}$	D. $\log _{9} 243$	E. $\log _{5}-25$	F. $\log _{7} \sqrt[3]{49}$	G. $\log _{4} 2+\log _{4} 32$

2. Rewrite the equation in exponential form.

A.	B. $\log _{3} 81=4$	C. $\log _{\frac{1}{2}} 8=-3$	D. $\log _{9} 3=\frac{1}{2}$

3. Choose from the functions below to match the graphs without a calculator.

| A. | B. | C. | D. | F. |
| :--- | :--- | :--- | :--- | :--- | :--- |

A)

B)

D)

E)

:

4. Use a calculator to evaluate the logarithm. Round to three decimal places.
a) $\log 145$
b) $2 \ln 0.75$
c) $\log _{3} 17$
d) $\quad \log _{5} \frac{1}{4}$
5. Complete the table for a savings account in which interest is compounded continuously. Round to two decimal places.

Initial investment	Annual \% Rate	Time to Double	Amount after 10 years
$\$ 30,000$	8.5%		
$\$ 15,000$		$16 y e a r s$	

6. Expand completely:

A.	B.	
$\log 4 x^{5} \frac{8 x^{2}(y-2)}{\sqrt{z}}$		C.
$\ln \sqrt{x} y^{3}$		

7. Condense completely:

A.	B.	
$4[\ln z+\ln (z+5)]-2 \ln (z-5)$	$\log _{5} 8-\log _{5} x$	C.
$3 \ln x+4 \ln y-4 \ln z$		

8. Solve for x in each equation

A.	B. $2^{x+2}=32$ $2^{x}=20$	C. $2\left(4^{2 x-8}\right)-5=27$
D. $\ln (11-6 x)=\ln (1-x)$	E. $\log _{4} x=-2$	F. $15 \ln x=45$
H. $2 \log _{3} 5 x=20$	I. $\log _{2} x+\log _{2}(x+2)=\log _{2}(x+6)$	J. $\log _{3} x+\log _{3}(x-8)=2$

9. Calculate the amount if $\$ 10,000$ is invested at 3.75% interest for 40 years. Compare the results and determine which is a better deal.
a) compounded monthly
b) compounded continuously
10. A sum of $\$ 12,000$ is invested at a rate of 7.55% compounded continuously. How long will it take to double?
11. The number of bacteria N in a culture is modeled by $\mathrm{N}=$ $200 \mathrm{e}^{\mathrm{kt}}$ where t is the time in hours. If $\mathrm{N}=800$ when $\mathrm{t}=4$, estimate the time required for the population to double in size. Solve the equation. (first solve for k). Round to three decimal places if needed.
E. 12. The population of Tucson is 515,526 , which can be model with $\mathrm{P}=515,526 \mathrm{e}^{0.012 t}$ where $\mathrm{t}=0$ represents the year 2009. According to this model, in what year will the population reach 570,000 ?
12. Find the exponential equation for each graph in the form $f(x)=c\left(b^{x}\right)$
A.

B.

13. Sketch the graph of each function. State the shifts, domain, range, intercepts and asymptotes of each.
A. $g(x)=\log _{4}(x+2)+4$

B. $f(x)=-2^{x-1}-3$

14. Find the zeros of the polynomial
$f(x)=12 x^{3}+11 x^{2}-13 x-10$
15. If $(\mathrm{x}-8 \mathrm{i})$ is a factor of a polynomial, what is another factor? Write a possible equation in standard form that would give the zeros associated with those factors.
16. Sketch a polynomial with the following:

- Positive lead coefficient
$\mathrm{x}=2$ with multiplicity 3
$\mathrm{x}=5$ with multiplicity 1
$\mathrm{x}=-3$ with multiplicity 2

18. Find the intercepts, asymptotes, domain and range of the rational function. Sketch a graph of the function.
$f(x)=\frac{x^{2}-5 x+4}{x^{2}-4}$
Intercepts
x-intercept(s)
y-intercept

Asymptotes

Horizontal:
Vertical:
Slant:

Domain

D :

Hole:

