	Name	Date	Period
--	------	------	--------

Review for Midterm

Without a calculator:

1. Evaluate the expression without using a calculator (you must show your work).

А.	В.	C.	D.	E.	F.	G.
$\log_2 \frac{1}{8}$	log10	$\log_b b^{-3}$	log ₉ 243	log ₅ -25	$\log_7 \sqrt[3]{49}$	$\log_4 2 + \log_4 32$

2. Rewrite the equation in exponential form.

А.	В.	С.	D.
$\log_{3} 81 = 4$	$\log_5 0.04 = -2$	$\log_{\frac{1}{2}} 8 = -3$	$\log_9 3 = \frac{1}{2}$

3. Choose from the functions below to match the graphs without a calculator.

А.	В.	C.	D.	E.	F.
$y = -\log_3$	$x \qquad y = \log_3(-x)$	$y = \log_3(x+3)$	$y = 2^{-x}$	$y = -e^x + 1$	$y = 3^x - 2$
A)		B)	C		7
D)		E)	F		
4. Use a calculatoa) log 145	r to evaluate the loga b) 2ln 0.75	arithm. Round to the c) log ₃ 1		$\log_5 \frac{1}{4}$	

5. Complete the table for a savings account in which interest is compounded continuously. Round to two decimal places.

Initial investment	Annual % Rate	Time to Double	Amount after 10 years
\$30,000	8.5%		
\$15,000		16years	

6. Expand completely:

A.	В.	С.
$\log_2 \frac{8x^2(y-2)}{\sqrt{2}}$	$\log 4x^5$	$\ln \sqrt{x} y^3$
$\log_2 \frac{1}{\sqrt{z}}$		-
V 2.		

7. Condense completely:

A. $4[\ln z + \ln(z+5)] - 2\ln(z-5)$	B. $\log_5 8 - \log_5 x$	C. $3\ln x + 4\ln y - 4\ln z$

8. Solve for x in each equation

8. Solve for x in each equation		
A. $2^{x+2} = 32$	B. $2^x = 20$	C. $2(4^{2x-8}) - 5 = 27$
D. $\ln(11-6x) = \ln(1-x)$	E. $\log_4 x = -2$	F. $15 \ln x = 45$
H. $2\log_3 5x = 20$	I. $\log_2 x + \log_2(x+2) = \log_2(x+6)$	J. $\log_3 x + \log_3 (x - 8) = 2$
K. $\log(3x+2) + \log(x-1) = 1$	L. $5^{4x}5^{-x} = 5^{17}$	M. $-2e^{7.4x-5} + 6 = -68.9$

9. Calculate the amount if \$10,000 is invested at 3.75% interest for 40 years. Compare the results and determine which is a better deal.a) compounded monthly	10. The number of bacteria N in a culture is modeled by $N = 200e^{kt}$ where t is the time in hours. If $N = 800$ when $t = 4$, estimate the time required for the population to double in size. Solve the equation. (first solve for k). Round to three decimal places if needed.
b) compounded continuously	
11. A sum of \$12,000 is invested at a rate of 7.55% compounded continuously. How long will it take to double?	E. 12. The population of Tucson is 515,526, which can be model with P= 515,526 $e^{0.012t}$ where t= 0 represents the year 2009. According to this model, in what year will the population reach 570,000?

13. Find the exponential equation for each graph in the form $f(x) = c(b^x)$

14. Sketch the graph of each function. State the shifts, domain, range, intercepts and asymptotes of each. A. $g(x) = \log_4(x+2)+4$ B. $f(x) = -2^{x-1}-3$

A. $g(x) = \log_4(x+2) + 4$

15. Find the zeros of the polynomial $f(x) = 12x^3 + 11x^2 - 13x - 10$

16. If (x - 8i) is a factor of a polynomial, what is another factor? Write a possible equation in standard form that would give the zeros associated with those factors.

18. Find the intercepts, asymptotes, domain and range of the rational function. Sketch a graph of the function.

$r^2 - 5r + 4$										
$f(x) = \frac{x^2 - 5x + 4}{x^2 - 4}$										
$x^{2}-4$										
<u>Intercepts</u>										
x-intercept(s)										
y-intercept										
y moreept										
						I	I	I		
Asymptotes					_				+	+▶
<u>Asymptotes</u> Horizontal:										
Horizontal:										
Horizontal: Vertical:										
Horizontal:										
Horizontal: Vertical: Slant:										
Horizontal: Vertical: Slant: Domain										
Horizontal: Vertical: Slant:										
Horizontal: Vertical: Slant: Domain										