1. Evaluate the expression without using a calculator (you must show your work).						
A.	B.	C.	D.	E.	F.	G.
$\log_2 \frac{1}{8}$	log 10	$\log_b b^{-3}$	log ₉ 243	$\log_5 - 25$	$\log_{7} \sqrt[3]{49}$	log ₄ 2 + log ₄ 32

2. Rewrite the equation in exponential form without a calculator.

A.			
\log_3	81	=	4

B.
$\log_{5} 0.04 = -2$

$$\log_{\frac{1}{2}} 8 = -3$$

$$\log_9 3 = \frac{1}{2}$$

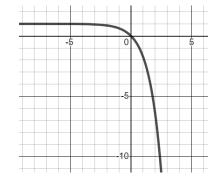
3. Choose from the functions below to match the graphs without a calculator.

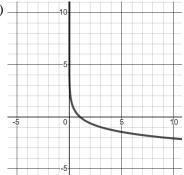
A.

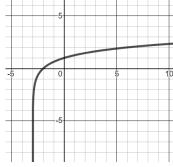
(Ξ.

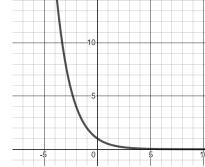
F.

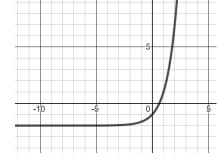
$$v = -\log_2 x$$


$$y = -\log_3 x$$
 $y = \log_3(-x)$ $y = \log_3(x+3)$


$$y = 2^{-x}$$


$$y = -e^x + 1 \qquad y = 3^x - 2$$


$$y = 3^x - 2$$


A)

- 4. Use a calculator to evaluate the logarithm. Round to three decimal places.
- a) log 145

b) 2ln 0.75

c) log_317

d)

$$\log_5 \frac{1}{4}$$

5. Complete the table for a savings account in which interest is compounded continuously. Round to two decimal places.

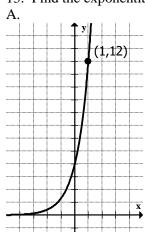
Initial investment	Annual % Rate	Time to Double	Amount after 10 years
\$30,000	8.5%		
\$15,000		16years	

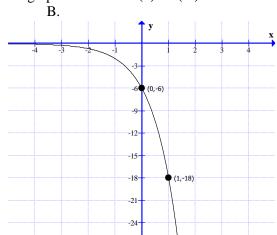
6. Expand completely:

6. Expand completely:				
A.	B.	C.		
$\log_2 \frac{8x^2(y-2)}{\sqrt{z}}$	$\log 4x^5$	$\ln \sqrt{x} y^3$		

7. Condense completely:

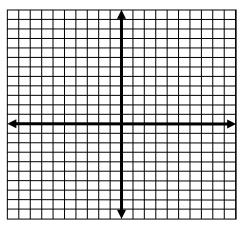
A.	B.	C.
$4[\ln z + \ln(z+5)] - 2\ln(z-5)$	$\log_5 8 - \log_5 x$	$3\ln x + 4\ln y - 4\ln z$

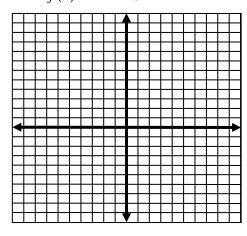

8. Solve for x in each equation				
A.	B.	C.		
$2^{x+2} = 32$	$2^{x} = 20$	C. $2(4^{2x-8}) - 5 = 27$		
		_(\		
D. $\ln(11-6x) = \ln(1-x)$	E. $\log_4 x = -2$	F. $15 \ln x = 45$		
	<i>C</i> 4			
H. $2\log_3 5x = 20$	I. $\log_2 x + \log_2 (x+2) = \log_2 (x+6)$	J. $\log_3 x + \log_3 (x - 8) = 2$		
W 1 (2 · 0) · 1 (1) · 1	4x x -17	74×5		
K. $\log(3x+2) + \log(x-1) = 1$	L. $5^{4x}5^{-x} = 5^{17}$	$M2e^{7.4x-5} + 6 = -68.9$		


- 9. Calculate the amount if \$10,000 is invested at 3.75% interest for 40 years. Compare the results and determine which is a better deal.
- a) compounded monthly

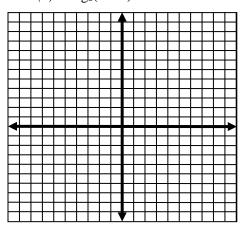
10. The number of bacteria N in a culture is modeled by N = $200e^{kt}$ where t is the time in hours. If N = 800 when t = 4, estimate the time required for the population to double in size. Solve the equation. (first solve for k). Round to three decimal places if needed.

- b) compounded continuously
- 11. A sum of \$12,000 is invested at a rate of 7.55% compounded continuously. How long will it take to double?
- 12. The population of Tucson is 515,526, which can be model with $P = 515,526e^{0.012t}$ where t = 0 represents the year 2009. According to this model, in what year will the population reach 570,000?


13. Find the exponential equation for each graph in the form $f(x) = c(b^x)$



14. Sketch the graph of each function. State the shifts, domain, range, intercepts and asymptotes of each.


A.
$$g(x) = \log_4(x+2) + 4$$

B.
$$f(x) = -2^{x-1} - 3$$

C.
$$h(x) = \log_2(x-3) + 1$$

