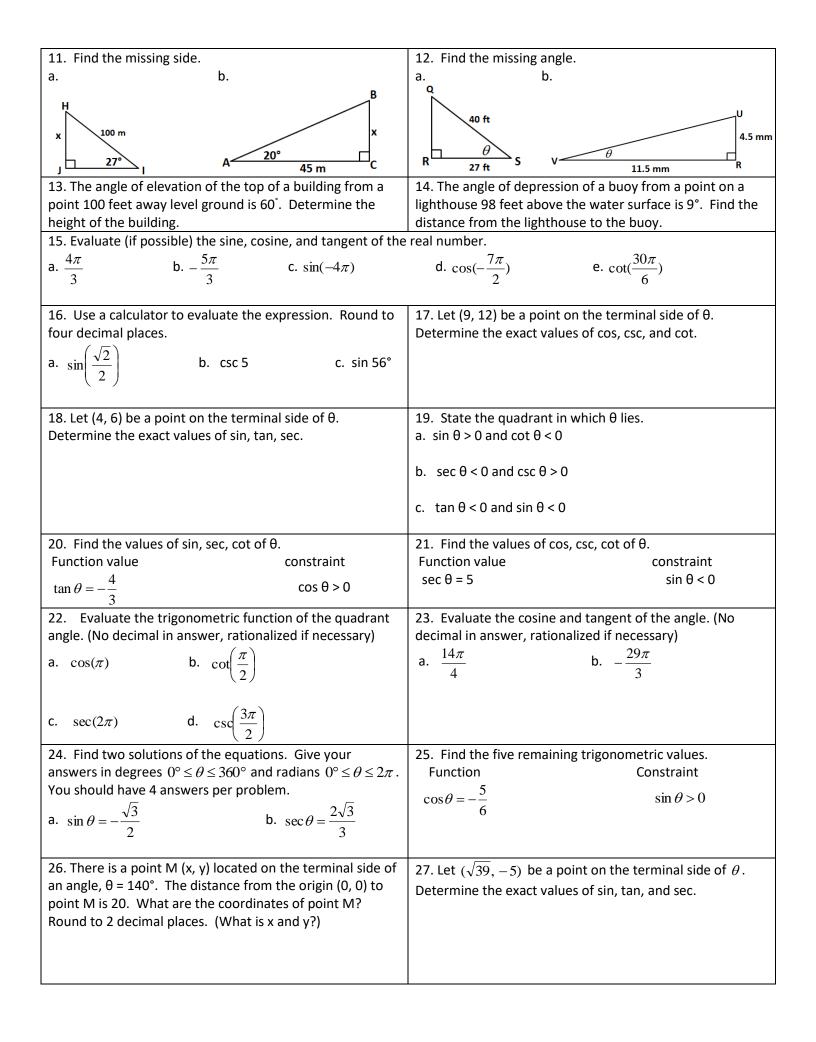

- 1. Given $\theta = 400^{\circ}$
- A. In what quadrant does the terminal side fall?
- B. Convert θ to radian measure.
- C. Find the reference angle.

2. Given $\triangle ABC$, find the following:

- b. csc C =
- c. cot C = _____



- 3. Evaluate the following and give exact answers with rationalized denominators as needed. No Calculators.
- a. sin 45° = _____
- b. cos 60° = _____
- c. tan 30° =
- d. sin 270° = _____ e. cos 0° = ____ f. csc 45° = _____
- g. tan 45° = _____ h. sec 30° = _____
- i. tan π =
- j. $\sin\left(\frac{\pi}{3}\right) =$ _____ k. $\tan\left(\frac{\pi}{4}\right) =$ _____ l. $\cos\left(\frac{\pi}{4}\right) =$ _____
- 5. Sketch the angle in standard position. $\theta = 3.14$
- 4. Find the values of θ in degrees $0^{\circ} \le \theta \le 360^{\circ}$ and radians $0^{\circ} \le \theta \le 2\pi$ without the aid of a calculator. Find exact values for each. You will have four answers for each.
- a. $\tan \theta = -\sqrt{3}$
- b. $\csc\theta = \sqrt{2}$
- 6. Determine the quadrant in which each angle lies and sketch each angle in standard position.
- b. $\frac{24\pi}{7}$
- c. 4.25
- d. 840°
- e. -720°

- 7. Determine two coterminal angles (one positive and one negative) for each angle. Your units should match the given angle.
- 5π
- b. -540°

- 8. Sketch a right triangle corresponding to the trigonometric function of the acute angle θ . Use the Pythagorean theorem to determine the third side and then find the other five trigonometric functions of θ .
 - Sec $\theta = 6$
- Constraint: Quadrant 1

- 9. Evaluate without using a calculator. (Exact answers, no decimals, rationalize denominator as needed)
- a. sin 675° = _____ b. cos –930° = _____
- c. $\tan 420^{\circ} =$ d. $\sin \left(-\frac{11\pi}{3} \right) =$
- e. $\cos\left(\frac{15\pi}{4}\right) = _{----}$ f. $\tan\left(-\frac{23\pi}{6}\right) = _{----}$
- 10. Find the values of θ in degrees $0^{\circ} < \theta < 90^{\circ}$ and radians $0^{\circ} < \theta < \frac{\pi}{2}$ by using a calculator.
- a. $\sin \theta = .2588$
- b. $\tan \theta = .7002$
- c. $\cos \theta = .0872$

