\qquad
Graph each function. Be sure it goes through the vertex, x -intercepts, and y -intercept.

1. $f(x)=-4 x^{2}-12 x+16$
x - intercepts: \qquad , \qquad
y-intercept: \qquad
Vertex: \qquad -

2. $f(x)=9 x^{2} \quad 5 x+3$
x - intercepts: \qquad , \qquad
y-intercept: \qquad
Vertex: \qquad -

3. $f(x)=6 x^{2}+36 x$
x - intercepts: \qquad , \qquad
y-intercept: \qquad
Vertex: \qquad

4. $f(x)=\frac{1}{7} x^{2}+2 x+3$
x - intercepts: \qquad , \qquad
y-intercept: \qquad Vertex: \qquad

Write the equation of the parabola in standard form and then identify the vertex.
5. $f(x)=3 x^{2}-18 x+12$
6. $f(x)=4 x^{2}+8 x \quad 5$

8. Graph the piecewise function and state if it is continuous.

Graph Each Function. Be sure there are whole number points clearly marked that show the overall shape of the graph. State any shifts or reflections relative to the parent function.
9.

11.
$f(x)=\left(\begin{array}{ll}x & 5\end{array}\right)^{3}+2$

10.
$f(x)=(x+3)^{2} \quad 2$

12.
$f(x)=\sqrt{x+2}+2$

Find the inverse of each function	
$13 . f(x)=6 \quad 2 x$	14. $f(x)=\sqrt{x \quad 5}$
15. $f(x)=\frac{3 x-4}{x+7}$	$16 \cdot f(x)=x^{2} \quad 3$

Determine if the functions are inverses.
17. $f(x)=4 x+5 \quad g(x)=\frac{x \quad 5}{4} \quad$ 18. $\quad f(x)=\frac{4 \quad x}{2} \quad g(x)=8+2 x$

How can you determine if a function is a one-to-one function?
19. Use the functions $f(x)$ and $g(x)$ to answer the following questions

$$
\begin{equation*}
f(x) \tag{x}
\end{equation*}
$$

a) $f(3)=$
b) $g(-4)=$
c) $(f+g)(2)=$
d) $(f-g)(-4)=$
e) $(f g)(-2)=$
f) $(f / g)(-3)=$
g) $(f \circ g)(3)=$
h) $(g \circ f)(1)=$
20. A rock thrown off the San Francisco bridge at a velocity of $24 \mathrm{ft} / \mathrm{s}$ followed the given path:
$h(t)=-16 t^{2}+24 t+526$
A. How long did it take the rock to hit the water?
B. How tall was the bridge?
21. Other stuff you should review:

You should also be able to write an equation for a piecewise function (review \#1-5 word problems, still posted on the website on Tues/Wed 10/29 or 10/30.

Sketch quadratic functions that require the use of the quadratic formula (so they might have no x-intercepts or decimals that are not nice numbers). Examples from classwork on Tues/Wed 11/19 or 11/20 - \#1-6 around the room.

Given the two functions $f(x)=\mathrm{x} 2-3 \mathrm{x}+5$ and $g(x)=4 \mathrm{x}+3$ determine each:
22. $\left(\mathrm{f}_{\mathrm{o}} \mathrm{g}\right)(\mathrm{x})=$
23. $(\mathrm{g} \circ \mathrm{g})(\mathrm{x})=$
24. $(\mathrm{g} \circ \mathrm{f})(2)=$
25. $(\mathrm{f} \circ \mathrm{og})(-3)=$

Determine two functions $f(x)$ and $g(x)$ such that $h(x)=f(g(x))$.
26. $h(x)=\sqrt{2 x}$
28. A ball thrown straight up, from 3 meters above the ground, with a velocity of $14 \mathrm{~m} / \mathrm{s}$ has a path that follows the equation:
$h(t)=-4.9 t^{2}+14 t+3$
A. Sketch the graph
B. When does the ball hit the ground?
C. What is the maximum height?
27. $h(x)=4\left(\frac{1}{2 x}\right)^{2}+8\left(\frac{1}{2 x}\right)-5$
29.

$f(x)=$| $x+2$ | x | 1 |
| :--- | :---: | :---: |
| 1 | $1<x$ | 1 |
| $2 x$ | 1 | $x>1$ |

