1. Determine the quadrant(s) in which (x, y) is located so that the condition(s) is (are) satisfied.
A. $x>0$ and $y<0$
B. $-x>0$ and $y<0$
2. Find the center and radius of the circle

$$
(x-1)^{2}+(y+3)^{2}=25
$$

center: \qquad
radius: \qquad

Find the zeros.
3.
$y=4-\frac{3}{4} x$
4. $y=x^{3}+x^{2}-9 x-9$
5. $y^{2}-5 y+2 x^{2}=-4$
6. Write the slope-intercept forms of the equation of the line through the given point $(-21,15)$ and parallel to the given line.

$$
3 x+7 y-2=0
$$

7. Write the slope-intercept forms of the equations of the lines through the given point $(-21,15)$ and perpendicular to the given line.

$$
3 x+7 y-2=0
$$

8. On the same set of axes, graph the original given line in \#6 and graph the line parallel and the line perpendicular to this line from the equations you got for \#6 and \#7.
9. In 2003 there were 1078 J.C. Penney stores and in 2007 there were 1066 stores. Write a linear equation that gives the number of stores in terms of the year. Let $t=3$ represent 2003. Then predict the numbers of stores for the years 2012 and 2014. Are your answers reasonable? Explain.
10. Evaluate the function for the given values.

$$
f(x)=\left\{\begin{array}{l}
4-5 x, x \leq-2 \\
0,-2<x<2 \\
x^{2}+1, x \geq 2
\end{array}\right.
$$

A. $f(-3)$
B. $f(4)$
C. $f(-1)$
11. Evaluate the functions at each specified value of the independent variable and simplify.

$$
h(x)=3-2 x^{2}
$$

A. $h(2)$

$$
\text { B. } h\left(\frac{2}{3}\right)
$$

C. $h(x-3)$
12. Solve the following situations using $f(x)$ and $g(x)$.

$$
\mathrm{f}(\mathrm{x})=7 \mathrm{x}^{2}+11 \mathrm{x}-6 \quad \mathrm{~g}(\mathrm{x})=-15 \mathrm{x}-21
$$

A. $\mathrm{f}(\mathrm{x})=0$
B. $(\mathrm{x})=\mathrm{g}(\mathrm{x})$
C. $g(x)=0$
D. $f(x)=-10$

Find the domain of each function.

14. $h(x)=\frac{10}{x^{2}-2 x}$	15. $h(x)=\frac{\sqrt{x+6}}{6+3 x}$
Find the domain and range of the function.	
16.	17.
18. Determine if each is a function. A. $x+y^{2}=4$ B. $y=\sqrt{x+5}$	19. State the domain then simplify the rational expression $\frac{x^{2}+2 x-15}{x^{2}-3 x-40}$
20. Simplify the rational expression. $\frac{2 x^{2}+x-6}{x^{2}+4 x-5} \bullet \frac{x^{3}-3 x^{2}+2 x}{4 x^{2}-6 x}$	21. Add and simplify the rational expression. $\frac{2}{x^{2}+3 x-4}+\frac{x}{x^{2}-4 x+3}$
22. Determine the intervals over which the function is increasing, decreasing, or constant.	23. Use the graph to evaluate the following functions. A. $\mathrm{f}(5)$ C. $f(x)=0, x=$ B. $f(3)$ D. $f(x)=3, x=$

