\qquad
Per. \qquad

1) Find a polynomial of a degree n that has the given zero(s). Give the equation in standard form.
a) $x=0,4,2 \mathrm{i}$
2) Divide $p(x)=2 x^{4}+7 x^{3}-4 x^{2}-27 x-18$ by $x^{2}+x-6$ and state if it is a factor of the polynomial. If it is a factor, find the remaining zeros and sketch the graph.
3) Divide $x^{3}-5 x^{2}-11 x+8$ by $x+2$ and state if it is a factor of the polynomial. If it is a factor, find the remaining zeros and sketch the graph.
4) Use synthetic or long division to show that $\sqrt{ } 3$ is a zero of the polynomial $f(x)=x^{3}-2 x^{2}-3 x+6$. Find the remaining zeros.
5) Show that the given zero is a zero then find the remaining zeros.

$$
p(x)=x^{4}-2 x^{3}-14 x^{2}+22 x+33 \quad \text { Given } x=\sqrt{11}
$$

6) Use the quadratic formula to solve $x^{2}+6 x+10=0$
7) You need to use a graphing calculator to find one zero or more and then use synthetic division to show x is a solution of the polynomial equation. Use the appropriate technique to find the rest of the zeros. $f(x)=x^{3}-3 x^{2}+13 x-11$
8) You need to use a graphing calculator to find one zero or more and then use synthetic division to show x is a solution of the polynomial equation. Use the appropriate technique to find the rest of the zeros. $f(x)=3 x^{4}+x^{3}-3 x^{2}+9 x-10$
9) If $3+2 \mathrm{i}$ is a zero of a function $g(x)$, what is another zero of $g(x)$? Why?
10) Find a polynomial with integer coefficients that has zeros 4 , 3 i. Write your answer in standard form.
