\qquad Date \qquad Period \qquad
Create an equation that satisfies the conditions:

1. A rational function with asymptotes:
$x=-2, x=1$, and $y=3$
2. A rational function with asymptotes: $x=-3, x=4$, and $y=1$ and x intercepts $(2,0)$ and $(3,0)$
3. A rational function with asymptotes:
$x=9$, and $y=0$
4. A rational function with no vertical asymptotes and a y - intercept of 3
5. Find the equation for each rational function.

6. True or False. Explain your answer.
a) A rational function can have a vertical, horizontal, and slant asymptotes.
b) It is possible to have a rational function with no y-intercept and no vertical asymptote.
c) A rational function can cross a vertical asymptote but not a horizontal asymptote.
d) Transforming a rational function 5 units to the right that has asymptotes of $x=3$ and $y=2$ will result in asymptotes at $\mathrm{x}=8$ and $\mathrm{y}=7$.
e) The domain of a rational function will exclude the values of the vertical asymptotes and the holes.
7. It will cost $\$ 95,000$ for research and development of a new computer game. Once completed, individual games can be produced for just $\$ 1.55$ each. If the first 275 disks are the given away as samples, the function $C(x)=\frac{1.55 x+95,000}{x-275}$ determines the average production cost per disk where x is the total number of games produced.
A. How many disks should be produced, so you can charge $\$ 20$ per disk?
B. What is the minimum cost per disk?
8. Imagine that you own a T-shirt business. The cost of creating the design and purchasing printing supplies is $\$ 800$. In addition, the cost of each T-shirt is $\$ 4.75$. The average cost per T-shirt for the business to manufacture x T-shirts is $C(x)=\frac{4.75 x+800}{x}$.
A. Find the average cost per T-shirt when $x=100,1000$, and 10,000.
B. What is the minimum cost per T-shirt?

| - | Find the x and y intercepts |
| :--- | :--- |\quad - Find any horizontal, vertical or slant asymptotes

- Each item should be written as an equation or coordinate pair.

9. $f(x)=\frac{x^{2}-x-12}{x^{2}-2 x-15}$	10. $f(x)=\frac{x^{2}}{x^{2}+9}$	11. $f(x)=\frac{x^{2}-2 x-8}{x^{2}-9}$
12. $f(x)=\frac{x^{2}+5}{x}$	13. $f(x)=\frac{1-x^{2}}{x}$	$14 . f(x)=\frac{x^{2}-11 x+30}{x^{2}-3 x-10}$
15. $f(x)=\frac{1-2 x}{x}$	16. $f(x)=\frac{4 x}{x^{2}+4}$	$17 . f(x)=\frac{1}{(x-3)^{2}}$

