\qquad Date \qquad Period \qquad

- Find the x and y intercepts
- Find the domain
- Plot specific points on each graph
- Each item should be written as an equation or coordinate pair.

Create an equation that satisfies the conditions:

1. A rational function with asymptotes:
$x=-2, x=1$, and $y=3$

$$
f(x)=\frac{3 x^{2}}{(x+2)(x-1)}
$$

3. A rational function with asymptotes:
$x=-3, x=4$, and $y=1$ and x intercepts $(2,0)$ and $(3,0)$

$$
f(x)=\frac{(x-3)(x-2)}{(x+3)(x-4)}
$$

- Find any horizontal, vertical or slant asymptotes

- Find any holes
- If one of the parts does not exist put NONE.

2. A rational function with asymptotes:
$x=9$, and $y=0$

$$
f(x)=\frac{1}{(x-9)}
$$

4. A rational function with no vertical asymptotes and a y - intercept of 3

$$
f(x)=\frac{3}{x^{2}+1}
$$

5. Find the equation for each rational function.

6. True or False. Explain your answer.
a) A rational function can have a vertical, horizontal, and slant asymptotes.

False a rational function will have a horizontal or a slant asymptote but not both.
b) It is possible to have a rational function with no y-intercept and no vertical asymptote.

True. The function would need to have a hole at $\mathrm{x}=0$. $f(x)=\frac{x}{x\left(x^{2}+1\right)}$
c) A rational function can cross a vertical asymptote but not a horizontal asymptote.

False, a rational function can cross a horizontal asymptote but not a vertical one.
d) Transforming a rational function 5 units to the right that has asymptotes of $x=3$ and $y=2$ will result in asymptotes at $\mathrm{x}=8$ and $\mathrm{y}=7$.
False translating the function 5 units to the right will move the vertical asymptote 5 to the right $x=8$ but will not affect the horizontal asymptote.
e) The domain of a rational function will exclude the values of the vertical asymptotes and the holes. True. If there is a vertical asymptote or a hole the function is undefined at that x value.
7. It will cost $\$ 95,000$ for research and development of a new computer game. Once completed, individual games can be produced for just $\$ 1.55$ each. If the first 275 disks are the given away as samples, the function $C(x)=\frac{1.55 x+95,000}{x-275}$ determines the average production cost per disk where x is the total number of games produced.
A. How many disks should be produced, so you can charge $\$ 20$ per disk?

Solve $20=\frac{1.55 x+95,000}{x-275}$ should give you 5448 disks
B. What is the minimum cost per disk?
\$1.55
8. Imagine that you own a T-shirt business. The cost of creating the design and purchasing printing supplies is $\$ 800$. In addition, the cost of each T-shirt is $\$ 4.75$. The average cost per T-shirt for the business to manufacture x T-shirts is $C(x)=\frac{4.75 x+800}{x}$.
A. Find the average cost per T-shirt when $x=100,1000$, and 10,000 .

If $x=100$: $\$ 12.75$, if $x=1000$: $\$ 5.55$, and if $x=10,000$: $\$ 4.83$).
B. What is the minimum cost per T-shirt? The horizontal asymptote $\$ 4.75$

10. $f(x)=\frac{x^{2}}{x^{2}+9}$

13. $f(x)=\frac{1-x^{2}}{x}$

16. $f(x)=\frac{4 x}{x^{2}+4}$

11. $f(x)=\frac{x^{2}-2 x-8}{x^{2}-9}$

14. $f(x)=\frac{x^{2}-11 x+30}{x^{2}-3 x-10}$

17. $f(x)=\frac{1}{(x-3)^{2}}$

