\qquad

1. Use the graphs of $f(x)$ and $g(x)$ given below to answer the following.

a) If we let $h(x)=\frac{f(x)}{g(x)}$, Is $h(x)$ a rational function? Why?
b) What is (are) the vertical asymptotes of $h(x)$?
c) What is (are) the zeros of $h(x)$?
2) Write the transformed equation for each:
a) Shift the graph of $y=\frac{1}{2 x-3}$ two units to the right.
b) Shift the graph of $y=\frac{3 x-1}{2 x^{2}+5}$ four units down.
c) Reflect the graph of $y=\frac{x+1}{x-3}$ across the y-axis.
d) Shift the graph of $y=\frac{x}{2 x+4}$ two units to the left and five up.
3) Write an equation for each of the following
a) A rational function with asymptotes $y=0, x=2, x=-3$
b) A rational function with asymptotes $y=2, x=-1$
c) A rational function with asymptotes $y=1, x=-3$, and a hole at $x=2$
d) A rational function with asymptotes $y=3, x=2$, and $x=-2$
4) Suppose $y=f(x)$ is a rational function with a horizontal asymptote of $y=3$ and a vertical asymptote of $x=5$.
a) What is the domain of $f(x)$?
b) What are the asymptotes of the transformed function $y=f(x-2)$?
c) What are the asymptotes of the transformed function $y=f(x)+5$?
d) What are the asymptotes of the transformed function $y=f(x+3)-4$
5) If $y=f(x)$ is a rational function with a horizontal asymptote of $y=0$ and a vertical asymptotes at $x=5$ and $x=-2$.
a) What is the domain of $f(x)$?
b) What are the asymptotes of the transformed function $y=f(x+1)$?
c) What are the asymptotes of the transformed function $y=f(x)-4$?
d) What are the asymptotes of the transformed function $y=f(x-3)+7$
6) Find an equation for each of the rational functions represented below (Leave in factored form):

